A Collaborative Filtering Recommendation Algorithm Based On User Clustering And Item Clustering
ثبت نشده
چکیده
Recommendations that are personalized help the users in getting the list of items that are of their interest in e-commerce sites. Majority of recommender systems use Collaborative Filtering techniques to generate recommendations to their users. This project implements an information filtering technique called as Collaborative Filtering for generating personalized recommendations in movies for user. Collaborative Filtering is of two types, namely, collaborative filtering based on users and collaborative filtering based on items. Collaborative Filtering based on users is more expensive computationally but it produces better results. Collaborative Filtering based on users is not preferred because it encounters the problems of Scalability when the number of users increases. Therefore, we use item-based Collaborative Filtering which is an alternative method. Collaborative Filtering, which is based on items uses two techniques-Pearson correlation technique and Adjusted cosine technique for calculating the similarity between items and to generate recommendations to users. In this Project both the above techniques are used and to measure the accuracy of the predictions generated by these techniques, Root Mean Square Error is computed. iii CONTENTS Contents Page No.
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملA Recommendation Algorithm Using Hybrid Clustering
Recommendation algorithms apply knowledge discovery techniques to the problem of making product recommendation during a live interaction and achieving widespread success in Ecommerce nowadays. With the magnitudes of users and items grow rapidly, resulting in the extreme sparsity of user rating data and the decreasing of real time performance. To solve the problem, the paper proposed a personali...
متن کاملA Collaborative Filtering Recommendation Algorithm Based on User Clustering and Item Clustering
Personalized recommendation systems can help people to find interesting things and they are widely used with the development of electronic commerce. Many recommendation systems employ the collaborative filtering technology, which has been proved to be one of the most successful techniques in recommender systems in recent years. With the gradual increase of customers and products in electronic c...
متن کامل